Important Settings

Resource allocation is important for the execution of any job. If not configured correctly, the job can consume the entire clusters resources and cause execution failure because of memory and other related problems.

This section provides guidelines for configuring the following important settings:


A bucket is the smallest unit of in-memory storage for TIBCO ComputeDB tables. Data in a table is distributed evenly across all the buckets. When a new server joins or an existing server leaves the cluster, buckets are moved around to ensure that the data is balanced across the nodes where the table is defined.

The default number of buckets in the TIBCO ComputeDB cluster mode is 128. In the local mode, it is cores*2, subject to a maximum of 64 buckets and a minimum of 8 buckets.

The number of buckets has an impact on query performance, storage density, and ability to scale the system as data volumes grow.

If there are more buckets in a table than required, it means there is less data per bucket. For column tables, this may result in reduced compression that TIBCO ComputeDB achieves with various encodings. Similarly, if there are not enough buckets in a table, not enough partitions are created while running a query and hence cluster resources are not used efficiently. Also, if the cluster is scaled at a later point of time rebalancing may not be optimal.

For column tables, it is recommended to set a number of buckets such that each bucket has at least 100-150 MB of data. This attribute is set when creating a table.


The default member-timeout in TIBCO ComputeDB cluster is 30 seconds. The default is 120 seconds and spark.executor.heartbeatInterval is 10 seconds as noted in the Spark documents.
If applications require node failure detection to be faster, then these properties should be reduced accordingly (spark.executor.heartbeatInterval but must always be much lower than as specified in the Spark Documents).
However, note that this can cause spurious node failures to be reported due to GC pauses. For example, the applications with reduced settings need to be resistant to job failures due to GC settings.

This attribute is set in the configuration files conf/locators, conf/servers and conf/leads files.


TIBCO ComputeDB writes table data on disk. By default, the disk location that TIBCO ComputeDB uses is the directory specified using -dir option, while starting the member. TIBCO ComputeDB also uses temporary storage for storing intermediate data. The amount of intermediate data depends on the type of query and can be in the range of the actual data size.
To achieve better performance, it is recommended to store temporary data on a different disk (preferably using SSD storage) than the table data. This can be done by setting the spark.local.dir property to a location with enough space. For example, ~2X of the data size, in case of single thread execution. In case of concurrent thread execution, the requirement for temp space is approximately data size * number of threads. For example, if the data size in the cluster is 100 GB and three threads are executing concurrent ad hoc analytical queries in the cluster, then the temp space should be ~3X of the data size. This property is set in conf/leads as follows:

localhost -spark.local.dir=/path/to/local-directory 

The path specified is inherited by all servers. The temporary data defaults to /tmp. In case different paths are required on each of the servers, then remove the property from conf/leads and instead set as system property in each of the conf/servers file as follows:

localhost ... -J-Dspark.local.dir=/path/to/local-directory1

Operating System Settings

For best performance, the following operating system settings are recommended on the lead and server nodes.

Spark and TIBCO ComputeDB spawn a number of threads and sockets for concurrent/parallel processing so the server and lead node machines may need to be configured for higher limits of open files and threads/processes.

A minimum of 8192 is recommended for open file descriptors limit and nproc limit to be greater than 128K.
To change the limits of these settings for a user, the /etc/security/limits.conf file needs to be updated. A typical limits.conf used for TIBCO ComputeDB servers and leads appears as follows:

ec2-user          hard    nofile      32768
ec2-user          soft    nofile      32768
ec2-user          hard    nproc       unlimited
ec2-user          soft    nproc       524288
ec2-user          hard    sigpending  unlimited
ec2-user          soft    sigpending  524288
  • ec2-user is the user running TIBCO ComputeDB.

Recent linux distributions using systemd (like RHEL/CentOS 7, Ubuntu 18.04) need the NOFILE limit to be increased in systemd configuration too. Edit /etc/systemd/system.conf as root, search for #DefaultLimitNOFILE under the [Manager] section. Uncomment and change it to DefaultLimitNOFILE=32768. Reboot for the above changes to be applied. Confirm that the new limits have been applied in a terminal/ssh window with "ulimit -a -S" (soft limits) and "ulimit -a -H" (hard limits).

OS Cache Size
When there is a lot of disk activity especially during table joins and during an eviction, the process may experience GC pauses. To avoid such situations, it is recommended to reduce the OS cache size by specifying a lower dirty ratio and less expiry time of the dirty pages.

Add the following to /etc/sysctl.conf using the command sudo vim /etc/sysctl.conf or sudo gedit /etc/sysctl.conf or by using an editor of your choice:


Then apply to current session using the command sudo sysctl -p

These settings lower the OS cache buffer sizes which reduce the long GC pauses during disk flush but can decrease overall disk write throughput. This is especially true for slower magnetic disks where the bulk insert throughput can see a noticeable drop (such as 20%), while the duration of GC pauses should reduce significantly (such as 50% or more). If long GC pauses, for example in the range of 10s of seconds, during bulk inserts, updates, or deletes is not a problem then these settings can be skipped.

Swap File
Since modern operating systems perform lazy allocation, it has been observed that despite setting -Xmx and -Xms settings, at runtime, the operating system may fail to allocate new pages to the JVM. This can result in the process going down.
It is recommended to set the swap space on your system to at least 16 GB or preferably 32 GB. To set swap space use the following commands:

# sets a swap space of 32 GB

## If fallocate is available, run the following command: 
sudo sh -c "fallocate -l 32G /var/swapfile && chmod 0600 /var/swapfile && mkswap /var/swapfile && swapon /var/swapfile"
## fallocate is recommended since it is much faster, although not supported by some filesystems such as ext3 and zfs.
## In case fallocate is not available, use dd:
sudo dd if=/dev/zero of=/var/swapfile bs=1M count=32768
sudo chmod 600 /var/swapfile
sudo mkswap /var/swapfile
sudo swapon /var/swapfile

TIBCO ComputeDB Smart Connector Mode and Local Mode Settings

Managing Executor Memory

For efficient loading of data from a Smart Connector application or a Local Mode application, all the partitions of the input data are processed in parallel by making use of all the available cores. To improve ingestion speeds, small internal columnar storage structures are created in the Spark application's cluster, which are then directly inserted into the required buckets of the column table in the TIBCO ComputeDB cluster. These internal structures are in encoded form, and for efficient encoding, some memory space is acquired upfront which is independent of the amount of data to be loaded into the tables.
For example, if there are 32 cores for the Smart Connector application and there are 32 or more buckets on the column table, then each of the 32 executor threads will consume around 32MB of memory. This indicates that 32MB * 32MB (1 GB) of memory is required. Thus, the default of 1GB for executor memory is not sufficient, and therefore a default of at least 2 GB is recommended in this case.

You can modify this setting in the spark.executor.memory property. For more information, refer to the Spark documentation.

JVM settings for optimal performance

The following JVM settings are set by default on the server nodes of TIBCO ComputeDB cluster. You can use these as guidelines for smart connector and local modes:

  • -XX:+UseParNewGC
  • -XX:+UseConcMarkSweepGC
  • -XX:CMSInitiatingOccupancyFraction=50
  • -XX:+CMSClassUnloadingEnabled
  • -XX:-DontCompileHugeMethods
  • -XX:CompileThreshold=2000
  • -XX:+UnlockDiagnosticVMOptions
  • -XX:ParGCCardsPerStrideChunk=4k
  • -Djdk.nio.maxCachedBufferSize=131072


-XX:-DontCompileHugeMethods -XX:+UnlockDiagnosticVMOptions -XX:ParGCCardsPerStrideChunk=4k

CMS collector with ParNew is used by default as above and recommended. GC settings set above have been seen to work best in representative workloads and can be tuned further as per application. For enterprise users off-heap is recommended for best performance.

Set in the conf/locators, conf/leads, and conf/servers file.

Handling Out-of-Memory Error in TIBCO ComputeDB Cluster

When the TIBCO ComputeDB cluster faces an Out-Of-Memory (OOM) situation, it may not function appropriately, and the JVM cannot create a new process to execute the kill command upon OOM. See JDK-8027434.
However, JVM uses the fork() system call to execute the kill command. This system call can fail for large JVMs due to memory overcommit limits in the operating system. Therefore, to solve such issues in TIBCO ComputeDB, jvmkill is used which has much smaller memory requirements.

jvmkill is a simple JVMTI agent that forcibly terminates the JVM when it is unable to allocate memory or create a thread. It is also essential for reliability purposes because an OOM error can often leave the JVM in an inconsistent state. Whereas, terminating the JVM allows it to be restarted by an external process manager.
A common alternative to this agent is to use the -XX:OnOutOfMemoryError JVM argument to execute a kill -9 command. jvmkill is applied by default to all the nodes in a TIBCO ComputeDB cluster, that is the server, lead, and locator nodes. The jvmkill agent is useful in a smart connector as well as in a local mode too.

Optionally when using the -XX:+HeapDumpOnOutOfMemoryError option, you can specify the timeout period for scenarios when the heap dump takes an unusually long time or hangs up. This option can be specified in the configuration file for leads, locators, or servers respectively. For example:-snappydata.onCriticalHeapDumpTimeoutSeconds=10

jvmkill agent issues a SIGTERM signal initially and waits for a default period of 30 seconds. Thus allowing for graceful shutdown before issuing a SIGKILL if the PID is still running. You can also set the environment variable JVMKILL_SLEEP_SECONDS to set the timeout period. For example: export JVMKILL_SLEEP_SECONDS=10

jvmkill is verified on centos6 and Mac OSX versions. For running TIBCO ComputeDB on any other versions, you can recompile the lib files by running the snappyHome/aqp/src/main/cpp/io/snappydata/ script. This script replaces the lib file located at the following path:

  • For Linux agentPath snappyHome/jars/

  • For Mac agentPath snappyHome/jars/libgemfirexd.dylib

Handling the OOM-Killer by OS

In the enterprise version of the product TIBCO ComputeDB, the data is stored in off-heap i.e native memory. It uses Java's direct byte buffer which in turn uses glibc as native memory allocator. glibc has a known problem of fragmentation as it does not release the freed memory to the OS immediately to improve on performance. This fragmentation can grow in a long running cluster where memory requirement is extremely high and the memory is utilized rapidly thereby leading to the process being killed by the OS. This is known as OOM-Killer. This issue is faced by all products using glibc memory allocator and they overcome this by either having their own memory manager or tuning glibc according to their needs.

To avoid this issuem the following parameters are set by default in the product: * MALLOC_ARENA_MAX = 4 * MALLOC_MMAP_THRESHOLD_=131072 * MALLOC_MMAP_MAX_= 2147483647

You can overide the values of these default parameters by modifying the template in the conf directory.

Code Generation and Tokenization

TIBCO ComputeDB uses generated code for best performance for most of the queries and internal operations. This is done for both Spark-side whole-stage code generation for queries, for example,Technical Preview of Apache Spark 2.0 blog, and internally by TIBCO ComputeDB for many operations. For example, rolling over data from row buffer to column store or merging batches among others.
The point key lookup queries on row tables, and JDBC inserts bypass this and perform direct operations. However, for all other operations, the product uses code generation for best performance.

In many cases, the first query execution is slightly slower than the subsequent query executions. This is primarily due to the overhead of compilation of generated code for the query plan and optimized machine code generation by JVM's hotspot JIT. Each distinct piece of generated code is a separate class which is loaded using its own ClassLoader. To reduce these overheads in multiple runs, this class is reused using a cache whose size is controlled by spark.sql.codegen.cacheSize property (default is 2000). Thus when the size limit of the cache is breached, the older classes that are used for a while gets removed from the cache.

Further to minimize the generated plans, TIBCO ComputeDB performs tokenization of the values that are most constant in queries by default. Therefore the queries that differ only in constants can still create the same generated code plan. Thus if an application has a fixed number of query patterns that are used repeatedly, then the effect of the slack during the first execution, due to compilation and JIT, is minimized.


A single query pattern constitutes of queries that differ only in constant values that are embedded in the query string.

For cases where the application has many query patterns, you can increase the value of spark.sql.codegen.cacheSize property from the default size of 2000.

You can also increase the value for JVM's ReservedCodeCacheSize property and add additional RAM capacity accordingly.


In the smart connector mode, Apache Spark has the default cache size as 100 which cannot be changed while the same property works if you are using the Spark distribution of TIBCO ComputeDB.